对比学习-时序-合集
时间序列中的对比学习。在时间序列分析领域,考虑到时间序列的不变特性,已经提出了几种正对和负对的对比学习设计。表 1 比较了包括我们在内的各种 TS 对比学习方法的若干特性。T-Loss(Franceschi 等人,2019 年)从一个 TS 中随机抽样一个子序列,如果属于该 TS 的子序列,则将其视为正序列;如果属于其他 TS 的子序列,则将其视为负序列。Self-Time(Fan 等人,2020 年)通过将同一 TS 的增强样本定义为正样本和负样本来捕捉 TS 之间的样本间关系,并通过解决分类任务来捕捉 TS 内部的时间关系,其中类标签使用子序列之间的时间距离来定义。TNC(Tonekaboni 等人,2021 年)使用正态分布定义窗口的时间邻域,并将邻域内的样本视为正样本。TS-SD(Shi 等人,2021 年)使用三元组相似性判别任务训练模型,目标是识别两个 TS 中哪个与给定的 TS 更相似,使用 DTW 来定义相似性。TS-TCC(Eldele 等人,2021 年)提出了一种时间对比损失,即让增强预测彼此的未来,而 CA-TCC(Eldele 等人,2023 年)是 TS-TCC 在半监督设置下的扩展,采用了相同的损失。TS2Vec(Yue 等人,2022 年)将 TS 分成两个子序列,并在实例和时间维度上定义了分层对比损失。Mixing-up(Wickstrøm 等人,2022 年)通过混合两个 TS 生成新的 TS,目标是预测混合权重。CoST(Woo 等人,2022 年)利用时域和频域对比损失来学习季节趋势表征。TimeCLR(Yang 等人,2022 年)引入了相移和振幅变化增强,这是一种基于 DTW 的数据增强方法。TF-C(Zhang 等人,2022 年)同时学习基于时间和频率的 TS 表示,并提出了一种新颖的时频一致性架构。在医疗领域,Subject-Aware CL(Cheng 等人,2020 年)提出了一种实例化的 CL 框架,通过架构设计将时间信息纠缠在一起;CLOCS(Kiyasseh 等人,2021 年)提出考虑其应用中特别可用的空间维度,这与一般 TS 中的信道接近。以前用于 TS 的 CL 方法计算的是硬对比损失,即所有负对之间的相似性同样最小化,而我们为 TS 引入了软对比损失。