机器学习(七)
Life Long Learning
灾难性遗忘
- transfer learning 在意在第二个任务怎么样 I can do task 2 because I have learned task 1.
- life long learning在意第二个任务学了以后第一个怎么样 Even though I have learned task 2, I do not forget task 1.
评估
3个life long learning的解法
- Selective Synaptic Plasticity 突觸的 可塑性。Regularizationbased Approach
Basic Idea: Some parameters in the model are important to the previous tasks. Only change the unimportant parameters
一些方法文献 在ppt24页
- Additional Neural Resource Allocation
- Progressive Neural Networks 每次训练新的任务 需要额外的空间产生新的neural network。 任务量不多的时候 可以用
- Compacting, Picking, and Growing (CPG)
- PackNet
- Memory Reply
- generating data. Generating pseudo-data using generative model for previous tasks
- adding new classes
Three scenarios for continual learning https://arxiv.org/abs/1904.07734
network compression
Network Pruning
- weight pruning: the network architecture becomes irregular. hard to implement, hard to speedup 不规则 不好加速
- Neuron pruning: The network architecture is regular. Easy to implement, easy to speedup ……
- why pruning: larger network is easier to optimize
- lottery ticket hypothesis
Knowledge Distillation
- temperature for softmax
- teacher net to student net. Providing the information that “1” is similar to “7”
Parameter Quantization
Using less bits to represent a value
Weight clustering
Represent frequent clusters by less bits, represent rare clusters by more bits
• e.g. Huffman encoding
binary weights: weights are always +1 or -1
Architecture Design
- Depthwise Convolution
- Pointwise Convolution (1x1 filter)
Dynamic Computation
The network adjusts the computation it need.
Different devices, high/low battery
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 chiblog!
评论